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Abstract. This paper aims to generalize Artin’s ideas in [Art25] to establish an one-to-one corre-
spondence between the orbit braid group Borb

n (C,Zp) and a quotient of a group formed by some

particular Zp-homeomorphisms of a punctured plane. First, we find a faithful representation of

Borb
n (C,Zp) in a finite generated group whose generators are corresponding to generators of funda-

mental group of the punctured plane, by demonstrating that the representation from Borb
n (C×,Zp)

to the fundamental group is faithful. Next we investigate some characterizations of orbit braid rep-

resentation to get our conclusion.

1. Introduction

Braid groups are fundamental objects in mathematics, which were first defined rigorously and studied
by Artin in [Art25]. The most typical braid group is Bn = π1(F (C, n)/Σn), where

F (C, n) = {(x1, . . . , xn) ∈ C×n|xi 6= xj for i 6= j}

and Σn is the free action of the symmetric group on F (C, n), defined by σ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)).
An element of Bn is an isotopy equivalent class of realized braids in 3−dimension space. By identifying
the initial points and the end points of these braids, we could get every knot and link in S3, according
to Alexander Theorem [Ale23].

Artin also found an algorithm to compute link group, which is the fundamental group of link’s
complement in S3, and has been regarded as one of the most important invariants of links in S3.
Artin’s method is as followed (the third step was simplified by Birman in [BC74]):

• Established a faithful representation of Bn in the fundamental group of D2 \Qn(the standard
disk in C punctured at n distinct points).

• Investigate some characteristics of homeomorphisms of D2 that fix boundary, to identify each
such kind of homeomorphism with a braid element.

• Using β : D2\Qn → D2\Qn to represent β ∈ Bn through the identification, we put the quotient
space {(D2 \Qn)× I}/ ∼ with (z, 0) ∼ (β(z), 1) into S3. Use the fibration (D2 \Qn)× I → S1

to find out that the action of β on the punctured disk is exactly the presentation of link group
of the closure of β̄.

The theory of orbit braids was upbuilt by Hao Li, Zhi Lü and Fenglin Li in [LLL19]:

Definition 1.1. for a connected topological manifold M of dimension greater than one, which admits
an effective G-action where G is a finite group,

FG(M,n) = {(x1, . . . , xn) ∈M×n|G(xi) ∩G(xj) = ∅ for i 6= j}.

Then α : I → FG(M,n) with α(0) = x = (x1, . . . , xn) and α(1) = gxσ = (g1xσ(1), . . . , gnxσ(n)) for

some (g, σ) ∈ G×n × Σn is called an orbit braid in M × I.

They have defined an equivalence relation among all orbit braids at an orbit base point, so that all
equivalence classes can form a group Borbn (M,G):

Definition 1.2. We say that two paths α, β : I → FG(M,n) with the same initial points are isotopic
with respect to the G-action relative to endpoints in M × I if α ' β rel ∂I.
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Intuitively, a string of an orbit braid could pass through its own orbits but could not pass through
other strings and their orbits. The geometric presentation of classical braid group Bn(R2) in R2 × I
gives us much more insights to the case of orbit braid group. Thus we begin our work from the case of

C ≈ R2 and C× = C \ {0} with the typical action Z y C defined by (n, z) 7→ e
2nπi
p z.

According to [LLL19], the generators of Borbn (C,Zp) are b and bk(k = 0, . . . , n − 2) where bk could
be realized as a representative path

αk(t) = (1 + i, . . . , (k + 1) + (k + 2)i + e−
π
2 i(1−t), (k + 2) + (k + 1)i + e

π
2 i(1+t), . . . , n+ ni),

and b could be realized as a representative path

α(t) = ((1 + i)e
t
p , 2 + 2i, . . . , n+ ni).

And Borbn (C,Zp) admits several relations:

(a) bp = e;
(b) (bb1)p = (b1b)

p (p even);
(c) bkb = bbk(k > 1);
(d) bkbk+1bk = bk+1bkbk+1;
(e) bkbl = blbk (|k − l| > 1).

Borbn (C×,Zp) has just the same gererators but one less relation. bp is a non-trivial element in this
group, since the first string cannot pass through the central point of the plane.

Then, we tried to employ Artins method, which computes the fundamental group of the complement
of the closure of the ordinary braid, to the case of orbit braid. We have made generalizations of the
first two steps of Artin:

• We established a faithful representation of Borbn (C×,Zp) in the fundamental group of D2 \Qpn,
and by which we proved a representation of Borbn (C,Zp) in a finite generated group is faithful.

• Then we investigated some characteristics of G-homeomorphisms of D2 that fix boundary, to
identify each such kind of G-homeomorphism with a braid element of Borbn (C,Zp).

2. Orbit braid action on a finite generated group

Definition 2.1. Rpn is a group with generators xij , 0 ≤ i ≤ p − 1 , 0 ≤ j ≤ n− 1, and presentation
given by

〈x00, x01, · · ·xp−1,n−1|(
i+p−1∏
k=i

xk mod p,0)xij(

i+p−1∏
k=i

xk mod p,0)−1 = xij , 0 ≤ i ≤ p− 1, 0 < j ≤ n− 1〉

ρR is a homomorphism from Borbn (C,Zp) to AutRpn, such that

ρR(b) :

{
xi0 7→ x(i+1) mod p,0, 0 ≤ i ≤ p− 1

xij 7→ x−1
i0 xijxi0, 0 ≤ i ≤ p− 1, j 6= 0

ρR(bk) :


xik 7→ xi,k+1, 0 ≤ i ≤ p− 1

xi,k+1 7→ xi,k+1xikx
−1
i,k+1, 0 ≤ i ≤ p− 1

xij 7→ xij , 0 ≤ i ≤ p− 1, j 6= k, k + 1

Theorem 2.2. Let

Morb
n = {Aut(π1(D2 \Qpn)) ∩HomG(D2 \Qpn, Id∂D2)}/ < ρR(bp) >,

where Qpn is the set of n points located at (1, 1), (2, 2) · · · (n, n) and their orbits under Zp in the interior
of 2-ball D2, and G-homeomorphisems are identity on the ∂D2, and < ρR(bp) > is generated by a G-
homeomorphisem which fixes outside B 5

3
(0, 0) and is 2π rotation within B 4

3
(0, 0). Then

Morb
n
∼= ρR(Borbn (C,Zp)) ∼= Borbn (C,Zp).

In fact, xij in Definition 2.1 is a basis of π1(D2 \Qpn) generated by a loop enclosing qij ∈ Qpn, with
the base point (0, 0).
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Lemma 2.3. ρR is well defined.

Proof. Verify ρR(bp) = ρR(e), whenever 0 ≤ i, j ≤ p− 1, j 6= 0 :

ρR(bp) :



xi0
ρR(b)7→ x(i+1) mod p,0

ρR(b)7→ · · · ρR(b)7→ x(i+p) mod p,0 = xi0

xij
ρR(b)7→ x−1

i0 xijxi0
ρR(b)7→ x−1

(i+1) mod p,0(x−1
i0 xijxi0)x(i+1) mod p,0

ρR(b)7→ · · ·
ρR(b)7→ x−1

(i+p−1) mod p,0 · · · (x
−1
(i+p) mod p,0x(i+p) mod p,jx(i+p) mod p,0) · · ·x(i+p−1) mod p,0

= (
i+p−1∏
k=i

xk mod p,0)−1xij(
i+p−1∏
k=i

xk mod p,0)−(−1) = xij

Verify ρR((bb0)p) = ρR((b0b)
p), whenever 0 ≤ i, j ≤ p− 1, j 6= 0, 1, p even :

ρR((bb0)p) :



xi0
ρR(b)7→ x(i+1) mod p,0

ρR(b0)7→ x(i+1) mod p,1
ρR(b)7→ x−1

(i+1) mod p,0x(i+1) mod p,1x(i+1) mod p,0

ρR(b0)7→ x−1
(i+1) mod p,1(x(i+1) mod p,1x(i+1) mod p,0x

−1
(i+1) mod p,1)x(i+1) mod p,1

= x(i+1) mod p,0
ρR(b)7→ · · · ρR(b0)7→ · · · · · · ρR(b)7→ · · · ρR(b0)7→ x(i+ p

2 ) mod p,0;

xi1
ρR(b)7→ x−1

i0 xi1xi0
ρR(b0)7→ xi0

ρR(b)7→ · · · · · · ρR(b0)7→ x(i+ p
2 ) mod p,1;

xij
ρR(b)7→ x−1

i0 xijxi0
ρR(b0)7→ x−1

i1 xijxi1
ρR(b)7→ (x−1

i0 xi1xi0)−1(x−1
i0 xijxi0)(x−1

i0 xi1xi0)

= x−1
i0 (x−1

i1 xijxi1)xi0
ρR(b0)7→ x−1

i1 (xi1xi0x
−1
i1 )−1xij(xi1xi0x

−1
i1 )xi1 = x−1

i0 x
−1
i1 xijxi1xi0

ρR(b)7→ · · · · · · ρR(b0)7→ (
i+ p

2−1∏
k=i

(xk( mod p),1xk( mod p),0))−1xij(
i+ p

2−1∏
k=i

(xk( mod p),1xk( mod p),0));

ρR((b0b)
p) :



xi0
ρR(b0)7→ xi1

ρR(b)7→ x−1
i0 xi,1xi0

ρR(b0)7→ xi0
ρR(b)7→ x(i+1) mod p,0

ρR(b0)7→ · · · ρR(b)7→ · · · · · · ρR(b0)7→ · · · ρR(b)7→ x(i+ p
2 ) mod p,0;

xi1
ρR(b0)7→ xi1xi0x

−1
i1

ρR(b)7→ (x−1
i0 xi1xi0)x(i+1) mod p,0(x−1

i0 xi1xi0)−1 ρR(b0)7→ xi0x(i+1) mod p,1x
−1
i0

ρR(b)7→ x(i+1) mod p,1
ρR(b0)7→ · · · · · · ρR(b)7→ x(i+ p

2 ) mod p,1;

xij
ρR(b0)7→ xij

ρR(b)7→ x−1
i0 xijxi0

ρR(b0)7→ x−1
i1 xijxi1

ρR(b)7→ x−1
i0 x

−1
i1 xijxi1xi0

ρR(b0)7→ · · · · · · ρR(b)7→ (
i+ p

2−1∏
k=i

(xk( mod p),1xk( mod p),0))−1xij(
i+ p

2−1∏
k=i

(xk( mod p),1xk( mod p),0));

ρR(bkb) = ρR(bbk) (k > 0), ρR(bkbk+1bk) = ρR(bk+1bkbk+1), ρR(bkbl) = ρR(blbk) (|k − l| > 1) are easy
to check. �

We first consider Borbn (C×,Zp) which has the same generators as Borbn (C,Zp). Let Fpn be a free
group with the same generators of Rpn, and ρF : Borbn (C×,Zp)→ Fpn just as what ρR does. Our aim
is to prove that ρF is faithful first and then ρR.

But before this, we have to make some preparations. Let FmZpC
× ⊂ C× be a set of fixed distinguished

m points and their orbits. Define FmZp(C×, n) = FZp(C×\FmZpC
×, n). Let πrn : FmZp(C×, n)→ FmZp(C×, r)

be the projection introduced from (C×)n = (
n∏

i=r+1

C×)× (
r∏
i=1

C×) = (C×)n−r × (C×)r → (C×)r. The

projection πn−1
n is a fibration with fiber Fn−1

Zp C×, whose proof is similar to [FN62]. Then we have

Lemma 2.4. π2(FZp(C×, n− 1)) = 1.

Proof. By the covering homotopy property of fibration we have an exact sequence

π2(Fn−1
Zp C×) // π2(FZp(C×, n))

π1(πn−1
n )// π2(FZp(C×, n− 1)) .

π2(Fn−1
Zp C×) is definitely trivial since Fn−1

Zp C× has the same homotopy type as wedge of p(n− 1) + 1

circles, whose universal covering space is a infinite tree in (p(n−1)+1)-dimension space. The conclusion
follows the induction of n. �
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Lemma 2.5. ρF is faithful.

Proof. [LLL19] has proved that

1→ Pn(C×,Zp)→ Borbn (C×,Zp)→ Z×np o Σn → 1

is a short exact sequence. Define AutZpFn ⊂ AutFn such that every h ∈ AutZpFn satisfies

c(h(xij)) = h(xi+1( mod p),j)

where c ∈ AutFpn subjects to c(xij) = xi+1( mod p),j . Now we have two short exact rows and they form
a commutative diagram

Pn(C×,Zp) //

ρF |Pn(C×,Zp)

��

Borbn (C×,Zp) //

ρF

��

Z×np o Σn

∼=
��

kerρ // AutZpFn // AutZp(Fn/[Fn, Fn])

By Five Lemma we just need to check that ρF |Pn(C×,Zp) is monomorphism.
With the idea that the central point should be regarded as a fixed vertical string, We could easily

see that the group Pn(C×,Zp) has generators (see Figure 1)

{Aiqj = {(bi−1 · · · b0)b(b0 · · · bi−1)}qbi · · · bj−1b
2
jb
−1
j−1 · · · b

−1
i {(bi−1 · · · b0)b(b0 · · · bi−1)}−q :

0 ≤ i < j ≤ n− 1, 0 ≤ q ≤ p− 1,

Ai = (bi−1 · · · b0bb0 · · · bi−1)p : 0 ≤ i ≤ n− 1}

Figure 1. A0,1,1 = b0bb0b
2
1(b0bb0)−1 and A0 = bp

Note that Pn−1(C×,Zp) = {Aiqj : 0 < i < j ≤ n − 1, 0 ≤ q ≤ p − 1;Ai : i > 0} is a subgroup of
Pn(C×,Zp). Define a projection

ε : Pn(C×,Zp)→ Pn−1(C×,Zp)

Aiqj 7→

{
Aiqj if 0 < i < j ≤ n− 1

1 if 1 ≤ j ≤ n− 1, i = 0

Ai 7→

{
Ai if 0 < i ≤ n− 1

1 if i = 0
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According to [LLL19], there is an isomorphism ln : Pn(C×,Zp)→ π1(FZp(C×, n),x).
Now we have a commutative diagram

1 //

id

��

Un(C×,Zp) = kerε //

ln|kerε
��

Pn(C×,Zp)
ε //

ln

��

Pn−1(C×,Zp) //

ln−1

��

1

id

��
1 // π1(Fn−1

Zp C×) // π1(FZp(C×, n))
π1(πn−1

n )// π1(FZp(C×, n− 1)) // 1

where the rows are exact, and π1(Fn−1
Zp C×) = π1(C \Qp(n−1)+1), and the bottom left corner is proved

by Lemma 2.4. By Five Lemma, ker ε is isomorphic to π1(Fn−1
Zp C×). This means that Un(C×,Zp) is a

free group with a free basis {A0, A0qj : 0 < j ≤ n − 1, 0 ≤ q ≤ p − 1} since {ln(A0, ln(A0qj : 0 < j ≤
n− 1, 0 ≤ q ≤ p− 1} is a free basis of π1(Fn−1

Zp C×).

Intuitively, we could examine what Ai(qj)A0rkA
−1
i(qj) is, to see why ker ε is generated by {A0, A0qj :

0 < j ≤ n−1, 0 ≤ q ≤ p−1}. Just shift the loop of A0rk down through the loop of Ai(qj), during which
the initial point and end point of the first loop is maintained so that it can always been presented
as composition of A0ab and A0. Than we just reduce the loops of Ai(qj) and A−1

i(qj) to identity. For

example, A1A001 = (A0A001A
−1
0 )A1. Other cases could be sorted and handled by induction. As a

result, every element a ∈ Pn(C×,Zp) can be represented uniquely as the normal form

a = a2 · · · an
with aj ∈ Uj(C×,Zp).

We have seen that Pn(C×,Zp) acts by conjugation as a group of automorphisms of Un+1(C×,Zp).
The automorphisms of fundamental groups could be regarded as the transformations of the loops of
Un+1(C×,Zp), as the same fashion discussed above. Thus if we define f : Un+1(C×,Zp) → Fn by
f(A0qj) = xqj(0 ≤ q ≤ p− 1, 0 < j ≤ n− 1), f(A0) = 0, the conjugate action would make the following
diagram commutative:

Pn(C×,Zp)
c //

id

��

AutUn+1(C×,Zp)

Aut(f)

��
Pn(C×,Zp)

ρF |Pn(C×,Zp) // AutZpFn

.

Because the image of c leaves A0 constant, we conclude that ker ρF |Pn(C×,Zp) is the subgroup of elements

in Pn(C×,Zp) which commute with Un+1(C×,Zp).
Assume that there is an element a ∈ ker ρF |Pn(C×,Zp) such that a = a2 · · · ai. Then ai commute with

A00i. Let π = b0b1 · · · bi−1. We have

πA00iπ
−1 = A001

aiA00ia
−1
i = A00i

(πaiπ
−1)A001(πaiπ

−1)−1 = (πaiπ
−1)(πA00iπ

−1)(πaiπ
−1)−1

= πaiA00ia
−1
i π−1

= πA00iπ
−1

= A001

However, πaiπ
−1 is in Un+1(C×,Zp). It must be Al001 since it commutes with A001. Then ai =

π−1Al001π = Al00i, which is a contradiction. �

Now we consider ρR.

Theorem 2.6. ρR is faithful.

Proof. If β ∈ Borbn (C,Zp) and ρR(β) = id, and β′ is the corresponding element in Borbn (C×,Zp), then

ρF (β′)(xij) = AijxµijA
−1
ij must be xij in Rpn. Because when the relation of Rpn is reduced, the
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odevity of words is kept, µij must be ij. If j > 0, Aij must be multiple of (
i+p−1∏
k=i

xk mod p,0) since other

words don’t commute with xij . If j = 0, since the words on the right and the left of xij are symmetric,

xij cannot commute with other words as a part of (
i+p−1∏
k=i

xk mod p,0). Thus Ai0 must be 1.

Note that

ρF (b)(

p−1∏
i=0

(

0∏
j=n−1

xij)) = (x00)−1

p−1∏
i=0

(

0∏
j=n−1

xij)x00

ρF (bk)(

p−1∏
i=0

(

0∏
j=n−1

xij)) =

p−1∏
i=0

(

0∏
j=n−1

xij).

Thus

ρF (β′)(

p−1∏
i=0

(

0∏
j=n−1

xij)) = A

p−1∏
i=0

(

0∏
j=n−1

xij)A
−1.

Thus Aij would contain the same number of (
i+p−1∏
k=i

xk mod p,0). Suppose Aij = (
i+p−1∏
k=i

xk mod p,0)m. In

conclusion, ρF (β′) would act just as ρF ((bp)m). Because we have proved ρF is faithful, β′ thus β must
be (bp)m. So β is identity in Borbn (C,Zp). �

3. characterizations of orbit braid representation

Lemma 3.1. If ρ ∈ AutRpn \ {idRpn}: (1)could be described as a simplest form:

(3.i) ρ(xij) = AijxµijA
−1
ij

where (i, j) 7→ µij is a permutation, and (2)

(3.ii) ρ(

p−1∏
i=0

(

0∏
j=n−1

xij)) = A

p−1∏
i=0

(

0∏
j=n−1

xij)A
−1

and (3)

(3.iii) c(Aij) = Ai+1( mod p),j

(3.iv) c(xµij ) = xµi+1( mod p),j

where c ∈ AutRpn subjects to c(xij) = xi+1( mod p),j. Then either (a) there is a pair (i, j) such that

xµijA
−1
ij could be absorbed by Af(ij); or (b) there is a pair (i, j) such that A−1

ij could absorb Af(ij)xµf(ij) ,

where f(ij) is the pair following (i, j) in the order of (3.ii).

Remark 3.2. These three conditions are from the geometrical perspective. Every homeomorphisms
on the disk would introduce the homomorphisms of fundamental group with the form of (3.i).

p−1∏
i=0

(
0∏

j=n−1

xij) is a loop starts at (0, 0) and encloses all the points and then return to (0, 0). Every

ρR(bk) would leave this loop fixed and ρR(b) would make it be a conjugation. Thus we have (3.ii).
Every G-homomorphisms under Zp-action would lead to (3.iii) and (3.iv).

Proof. We have
p−1∏
i=0

(

0∏
j=n−1

AijxµijA
−1
ij ) = A

p−1∏
i=0

(

0∏
j=n−1

xij)A
−1

Thus
p−1∏
i=0

(

0∏
j=n−1

A−1AijxµijA
−1
ij A) =

p−1∏
i=0

(

0∏
j=n−1

xij) = x0,n−1x0,n−2 · · ·xp−1,0
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We move xµ0,n−1
from the right to the left:

(?) x−1
0,n−1(A−1A0,n−1xµ0,n−1A

−1
0,n−1A) · · · (A−1Ap−1,0xµp−1,0A

−1
p−1,0A) = x0,n−2 · · ·xp−1,0

The x−1
0,n−1 must be absorbed. Since there is equal amount(could be negtive) of x0,n−1 before and after

each xij in each parenthesis, the x−1
0,n−1 must be ”transferred” alone these parentheses and eventually

absorbed by a xµij that is x0,n−1.
Suppose xµ0,n−1

is x0,n−1, then the transfer progress should be ended in the first parenthesis, because

if A−1A0,n−1 has a multiple of x0,n−1, then so is A−1
0,n−1A, which elements in subsequent parenthesis

could not absorb. Thus x−1
0,n−1 would commute with A−1A0,n−1, and is absorbed by xµ0,n−1 .Therefore

A−1 is multiple of (
0+p−1∏
k=0

xk mod p,0). Now we move the x0,n−2 from the right to the left. Eventually

we would be in two cases:
(i)The process depicted above can be done till the end. Every A−1AijxµijA

−1
ij A is equal to xij .

Then xµij is xij , and each A−1Aij could be reduce to identity. By (3.iii) , A and Aij are both identity.
Thus ρ is identity, which contradicts what we’d assumed.

(ii) If it’s not case(i), we can always assume that xµ0,n−2 is x0,n−1 in (?). Since xµ0,n−1 is not x0,n−1,

we have two ways to reduce x0,n−1 : either xµ0,n−1
A−1

0,n−1A is absorbed by A−1A0,n−2, which implies

(a) is true; or there is exactly one x0,n−1 in A−1A0,n−1 which can absorb x−1
0,n−1, such that x−1

0,n−1

could ”jump over” xµ0,n−1
, then reduce xµ0,n−2

. This means (b) is true. �

Lemma 3.3. Under the conditions and notations of Lemma 2, if ρ satisfies Lemma 2(a),

l(ρ ◦ ρR(bj−1)) < l(ρ) or l(ρ ◦ ρR(b−1)) < l(ρ),

and if ρ satisfies Lemma 2(b),

l(ρ ◦ ρR(b−1
j−1)) < l(ρ) or l(ρ ◦ ρR(b)) < l(ρ),

where l is length function, i.e., l(ρ) =
∑
i,j

(minimum letter lengths of the words AijxµijA
−1
ij ).

Proof. Case(a-i): There is a j such that xµijA
−1
ij could be absorbed by Ai,j−1, which means Ai,j−1 =

Aijx
−1
µijBi,j−1 for any 0 ≤ i ≤ p− 1 by Lemma 2 Condition(3). We have

xij
ρ7→ AijxµijA

−1
ij

xi,j−1
ρ7→ (Aijx

−1
µijBi,j−1)xµi,j−1

(Aijx
−1
µijBi,j−1)−1

xij
ρR(bj−1)7→ xijxi,j−1x

−1
ij

ρ7→ (AijxµijA
−1
ij )(Aijx

−1
µijBi,j−1)xµi,j−1

(Aijx
−1
µijBi,j−1)−1(AijxµijA

−1
ij )−1

= AijBi,j−1xµi,j−1
B−1
i,j−1A

−1
ij

xi,j−1
ρR(bj−1)7→ xij
ρ7→ AijxµijA

−1
ij

for any 0 ≤ i ≤ p− 1. Thus by comparison we get l(ρ ◦ ρR(bj−1)) < l(ρ).
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Case(a-ii): xµi0A
−1
i0 could be absorbed by Ai+1,n−1, which means Ai+1,n−1 = Ai0x

−1
µi0Bi+1,n−1 for

any 0 ≤ i ≤ p− 2 by Lemma 2 Condition(3). We have

xi0
ρ7→ Ai0xµi0A

−1
i0

xi+1,n−1
ρ7→ (Ai0x

−1
µi0Bi+1,n−1)xµi+1,n−1

(Ai0x
−1
µi0Bi+1,n−1)−1

xi0
ρR(b−1)7→ xi+1,0

ρ7→ Ai+1,0xµi+1,0A
−1
i+1,0

xi+1,n−1
ρR(b−1)7→ xi0xi+1,n−1x

−1
i0

ρ7→ (Ai0xµi0A
−1
i0 )(Ai0x

−1
µi0Bi+1,n−1)xµi+1,n−1(Ai0x

−1
µi0Bi+1,n−1)−1(Ai0xµi0A

−1
i0 )−1

= Ai0Bi+1,n−1xµi+1,n−1B
−1
i+1,n−1A

−1
i0

Since (3.iii) , letter length of Ai0xµi0A
−1
i0 is equal to Ai+1,0xµi+1,0

A−1
i+1,0. Thus we have l(ρ◦ρR(b−1)) <

l(ρ).
Case(b) is similar to the discussion above. �

Theorem 3.4. ρ ∈ AutRpn subjects to (3.i), (3.ii), (3.iii) and (3.iv) if and only if ∃ σ ∈ Borbn (C,Zp)
such that ρ is an element of the equivalent class ρR(σ).

Proof. ”If”: We have discussed in Remark 3.2 .
”Only if”: If l(ρ) = pn, then ρ = idRpn ∈ ρR(e). Otherwise by Lemma 3.1 and Lemma 3.3 we have

a σ ∈ Borbn (C,Zp) such that l(ρ◦ρR(σ)) < l(ρ). By induction we can render ρ as a product of elements
from Im(ρR). Thus the conclusion follows. �

Proof of Theorem 2.2 : Due to the discussion of Remark 3.2 , we have a map Morb
n → ρR(Borbn (C,Zp)).

Obviously it is a well defined homomorphism. It is a monomorphism exactly as the proof of Theorem
2.6 .

On the other hand, we can realize ρR(b) by a Zp-homeomorphism which fixes outside B 5
3
(0, 0) and

is 2π
p rotation within B 4

3
(0, 0). And we realize ρF (bk) by a Zp-homeomorphism which interchanges qik

and qi,k+1 and fixes outside those little disks which include them. Therefore ρR(Borbn (C,Zp)) ⊂Morb
n .

4. Orbit Link Group Via the Orbit Braid Representation

Just like the case of ordinary link, we could define orbit link in S3. To find a proper definition of
orbit links, we consider situations of closure of orbit braids.

The first step is to extend the G-action to S3. There are various ways to do this, and we construct
a canonical type of extension, which is about how S3 = ∂D4 is attached to S2, when we considere the
CW-structure of CP 2. If we have a boundary-keep homeomorphism g of D2, which is a 2-cell of S2,
then we map S3 to it by the attaching map, and then map it to itself by g, and then pull back to S3

and get

(4.v) (z1, z2) 7→

 z2

|z2|
g(
|z2|z1

z2
),

√
1− |g( |z2|z1z2

)|2

|z2|
z2

 .

For example, by the following extension of Zp-action we regard S3 in {(z1, z2) ∈ C2; |z1|2 + |z2|2 = 1}.
The Zp-action over S3 is

Zp × S3 → S3,

(n, z1, z2) 7→ (z1e
2πni
p , z2).
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Let me explain why it is meaningful. To make it easier to imagine, We had better treat projective
space as quotient space of sphere. Then CP 2 = {[z1, z2, z3]; z1, z2, z3 ∈ C, |z1|2 + |z2|2 + |z3|2 = 1}.
The 4-cell D4 is homeomorphic to {(z1, z2, c); z1, z2 ∈ C, c ∈ R+, |z1|2 + |z2|2 + c2 = 1}. Then

∂D4 = S3 = {(z1, z2); z1, z2 ∈ C, |z1|2 + |z2|2 = 1}

is directly attached to

CP 1 = {[z1, z2]; z1, z2 ∈ C, |z1|2 + |z2|2 = 1} ≈ S2.

The 2-cell D2 is homeomorphic to

(S2)+ = {(z1, b); z1 ∈ C, b ∈ R+, |z1|2 + b2 = 1}.

Hopf map refers to the first arrow of the following cofiber sequence:

S3 → CP 1 = S2 → S2 ∪D4 = CP 2

(z1, z2) 7→ [z1, z2]

If we just have a homeomorphism g of D2, which we have focused on, then we may regard D2 as 2-cell
of CP 1 and require g to keep boundary. From above discussion we have

S3 −−−−−→ (S2)+
≈−−−−−→ D2 g−−−−−→ D2 ≈−−−−−−−−−−→ (S2)+

(z1, z2)
× |z2|z27→

(
|z2|z1

z2
, |z2|

)
7→ |z2|z1

z2
7→ g(

|z2|z1

z2
) 7→

g(
|z2|z1

z2
),

√
1− |g(

|z2|z1

z2
)|2

 .

To pull back to S3, we multiple the twist factor z2
|z2| thus we have Equation 4.v.

On the other hand, we could adopt an alternative perspective to see it more intuitively. S1 can be
given a structure of H-space: (S1, 1) with a product

µ : S1 × S1 → S1

(z1, z2) 7→ z1z2,

where 1 is a unit. The Hopf constructionH(µ) : S1∗S1 → ΣS1 is induced by the following communative
diagram

(4.vi) ((z1, t), z2)
_

��

CS1 × S1

��

S1 × S1oo

µ

��

// S1 × CS1

��

(z1, (z2, t))_

��
(µ(z1, z2), t) CS1 S1oo // CS1 (µ(z1, z2), t)

where CS1 is the cone over S1, and S1 ∗ S1 and ΣS1 are the colimits of the first and the second row,
respectively. S1 × S1 is a torus, and to attach CS1 × S1, we just attach along each meridian a disk
inside the torus, and thus get a solid torus; To attach S1×CS1, we attach disks outside the torus along
every longitude. Thus S1 ∗ S1 is S3. We identify S3 with R2 ∪ {∞} through stereographic projection
and choose z2 = 0 as axis, (1, 0) as infinite point, and suppose the solid torus is {|z1| ≤ 1

2} in the S3.
Each disk inside the solid torus has the same argument of z2.

Now assume CS1 in the bottom left corner and the bottom right corner of (4.vi) correspond to
the upper and the lower hemisphere of ΣS1 = S2, respectively. Then every disk inside the solid
torus corresponds to the upper hemisphere by H(µ). Moreover, for each θ, {(z1, z2) ∈ S3, z2|z2| = eiθ}
maps to the 2-cell of S2 and the axis {z2 = 0} maps to the south pole of S2 by H(µ). Given that
µ adds the arguments of two circles, These correspondences would twist as z2 rotates. If we have
a homeomorphism on the 2-cell of S2, now we can extend it naturally, that is, it acts within every
{(z1, z2) ∈ S3, z2|z2| = eiθ} according to those correspondences. This approach also turns out to be (4.v).

Now we can close any geometric orbit braid of Borbn (C,Zp) by identifying the initial points and the
end points, and fit it in the solid torus. The closure of an orbit braid β ∈ Borbn (C,Zp) is denoted

9



by β̄ (by abuse of notation, β is regarded as one of its geometrical description c̃(β), where c̃(β) =

{c̃(β1), . . . , c̃(βn)}, c̃(βi) = {hc(βi)|h ∈ G}, and c(βi) = {(βi(s), s)|s ∈ I}).
Observating that if b is a generator of Borb2 (C,Z2), b̄ has only one string, whose orbit is its own, we

cannot distinguish a representative in one orbit, as what we have done in the case of orbit braids.

Definition 4.1. Given a finite group G and a topological manifold M with a G-action. L is an orbit
link in M under the G-action if L = (K1, . . . ,Kµ(L)) and for each 1 ≤ i ≤ µ(L), Ki is an continuous

map from S1 to M such that
1) For any g ∈ G and 1 ≤ i ≤ µ(L), there is exactly one j, 1 ≤ j ≤ µ(L), such that g(Ki(S

1)) = Kj(S
1).

2) If ∃ a, b ∈ S1 = L−1(M), a 6= b, and 1 ≤ i, j ≤ µ(L) (i may equal j), Ki(a) = Kj(b), then

there is a g ∈ G such that for any open set U ∈ S1 = K−1
i (M) containing a, there is an open set

V ∈ S1 = K−1
j (M) containing b, such that g|Ki(U) : Ki(U) → Kj(V ) is a homeomorphism, and

g(Ki(a)) = Kj(b).
Let (Ki,Kj) = {g ∈ G|g(Ki) = Kj}. If (Ki,Kj) 6= ∅, we say Ki and Kj belong to the same orbit.

Obviously, (Ki,Ki) is a subgroup of G. Moreover, under the precedent G-action, (Ki,Ki) is a cyclic
group. This property would be proved after the proof of Axander theorem for orbit links.

In the following part we would focus on a particular type of orbit links, which are in S3 under
a G-action extended by a G-action on 2-dimension disk. The twist mentioned above doesn’t really
matter, so we work with a simplified form of Equation 4.v:

Proposition 4.2. Suppose homeomorphism g(z) of 2-dimension disk {|z|2 = x2 + y2 ≤ 1} to itself
satisfies g(∂D2) = ∂D2 and g|∂D2 is a homeomorphism. Then

E(g) : S3 → S3

(z1, z2) 7→ (g(z1),

√
1− |g(z1)|2
|z2|

z2)

is a homeomorphism of S3.

Proof. We regard S3 in the following way:

S3 = {(z1, z2) ∈ C2; |z1|2 + |z2|2 = 1},

and set {
z1 = x1 + iy1 = r1eiθ1

z2 = x2 + iy2 = r2eiθ2

Than (r1, θ1, θ2) is a smooth chart of S3 around any p ∈ {(z1, z2) ∈ C2; z2 6= 0}, and (r1, θ1) is a
smooth chart of D2 around any p ∈ {|z1|2 ≤ 1; z1 6= 0}. Around p ∈ {(z1, z2) ∈ C2; z1 6= 0, z2 6=
0}, p = (r1, θ1, r2, θ2), g̃(r1, θ1) = g(z1) is a homeomorphism thus E(g)(z1, z2) = Ẽ(g)(r1, θ1, θ2) =
(g̃(r1, θ1), θ2) is a homeomorphism.

For p whose z1 = 0, we choose a neighborhood that is homeomorphic to a cylinder U × I. E(g)|U×I
is E(g)(z1, θ2) = (g(z1), θ2).

For p whose z2 = 0, we choose a neighborhood that is a ball formed by a bunch of half disks with
each disk the same θ2 and E(h) keeps each disk to the disks around E(h)(p). Therefore, E(g) is smooth
on S3. �

Example 4.3.

Proposition 4.4. If D2 admits an effective G-action such that every g ∈ G satisfies the properties in
Proposition 4.2, then for any β ∈ Borbn (D2, G), β̄ is an orbit link in S3 that admits E(G)-action.

Proof. Assum that β(0) = x = (x1, . . . , xn), β(1) = gxσ = (g1xσ(1), . . . , gnxσ(n)), and c̃(β) is a

representative. Let βi : I → S3 be the “closure” of the i-th component of β, o(σ) be the order of σ in
10



Σ, and li = o(gigσ(i)gσ2(i) · · · gσo(σ)−1(i)) be the order of gigσ(i)gσ2(i) · · · gσo(σ)−1(i) in G. Define

Ki : S1 → S3

z = eiθ 7→


βi(

liθ
2π ), 0 ≤ θ

2π ≤
1
li

giβσ(i)(
liθ
2π − 1), 1

li
≤ θ

2π ≤
2
li

· · ·
gigσ(i)gσ2(i) · · · gσ(li−2)(i)βσ(li−1)(i)(

liθ
2π − (li − 1)), li−1

li
≤ θ

2π ≤ 1

Now {hKi|h ∈ E(G), 1 ≤ i ≤ n} includes all the points of β̄. Remove overlaps, Then we get the form
β̄ = (K1, . . . ,Kµ(β̄)).

The first property of Definition 4.1 is easy to check. If ∃ a, b ∈ S1, a 6= b, and 1 ≤ i, j ≤ µ(L),
Ki(a) = Kj(b), then there must be a fix point βk(s) in D2 for some g ∈ G, which corresponds to
Ki(a) = Kj(b) in S3 after closing the braid. Suppose gβk and hβk correspond to (part of) Ki and Kj

which contain Ki(a) and Kj(b), then E(hg−1) ∈ (Ki,Kj) meets the second requirement of Definition
4.1. �

Now we intend to present every smooth orbit link, which is in S3 under a G-action extended by a
G-action on 2-dimension disk, as the closure of an orbit braid. The equivalence of orbit links is induced
by isotopy:

Definition 4.5. Two (piecewise) smooth orbit links L and L′ in M under the G-action are equivalent
if there is a homotopy map T = (T1, . . . , Tµ(L)), such that for each i, Ti : I × S1 → M is (piecewise

with respect to S1) smooth, and Ti(0, s) = Ki(s), Ti(1, s) = K ′i(s), and for each t ∈ I, T (t, ·) is an
orbit link in M under the G-action, which satifies (Ti(t, ·), Tj(t, ·)) = (Ki,Kj).

In the ordinary case, smooth links could be identified with polygonal links. In orbit case, however,
this simplification generally cannot be made, since we cannot expect orbits of a geodesic to be geodesics.
Thus we use piecewise smooth curves to substitute polygonal curves. By polishing finite many singular
points, the equivalence classes of piecewise smooth orbit links can be mapped to the equivalence classes
of smooth orbit links. This map is surjective and injective, since smooth links are piecewise smooth,
and smooth map Ti is piecewise smooth.

We try to define a “generator” to describe the element of deformation when applying isotopy to a
piecewise smooth orbit link:

Definition 4.6. If a0, a2, · · · are points in a smooth manifold M which admits a G-action, then
[a0, · · · , an] denotes a smooth n-simplex whose vertices are points a0, · · · , an. [a1, · · · , an]L denotes
[a1, · · · , an] ∩ L.

Let L be a piecewise smooth orbit link with a smooth curve [a, c], and b is a point outside L. Suppose
there is a [a, b, c] such that

[a, b, c]L = [a, c].

Then we say that operation E b
ac is applicable to L, if

E b
acL = L− [a, c] + [a, b] + [b, c]

is equivalent to L in terms of Definition 4.5. Such operations and their inverse are called elementary
deformations of orbit links.

Theorem 4.7. Every smooth orbit link in S3 under an E(G)-action is equivalent to a closed orbit
braid in D2 under the G-action.

Proof. In ordinary case the axis can be chosen arbitrarily, only required not to meet the link L. In
orbit case, however, the axis {z2 = 0} is fixed, hence an aditional step is needed to move L away from
the axis. If L has one component K1(z) ⊂ {z2 = 0}, namely it is equivalent to K1(z) = (z, 0), then

T1(t, z) = ((1− εt
2 )z,

√
εt− (εt)2

2 ) fulfil the goal if ε is sufficiently small.
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Now assume it is not this case. Suppose

K̃i :R→ S3

s 7→ Ki(e
is),

has K̃i(s0) ∈ {z2 = 0}. Choose x smaller than but very close to sup{s ∈ R; s < s0, K̃i(s) /∈ {z2 =

0}}, and choose y larger than but very close to inf{s ∈ R; s > s0, K̃i(s) /∈ {z2 = 0}}, such that

a = K̃i(x), c = K̃i(y) /∈ {z2 = 0}. Then choose a point b not in L ∪ {z2 = 0} but sufficiently close
to [a, c], such that E b

ac is applicable to L, and (∂[a, b, c] − [a, c]) ∩ {z2 = 0} = ∅. Then we also have
E(G)(∂[a, b, c]− [a, c]) ∩ {z2 = 0} = ∅, since E(G)({z2 = 0}) ⊂ {z2 = 0}.

Since the set of all open sets of {z2 = 0}} is countable, we could find a cover of L ∩ {z2 = 0},
composed of countable smooth curves [ai, ci] with vertices ai, ci not in {z2 = 0}. Find bi for each curve

step by step such that E bi
aici is applicable to E

bi−1
ai−1ci−1 · · ·E b1

a1c1L, and let homotopy T i(t) denotes this
equivalence. Then

(4.vii) T (t) =


T 1(2t), 0 ≤ t ≤ 1

2

· · ·
T (t) = T i(2it+ 2− 2i), 1− 21−i ≤ t ≤ 1− 2−i

· · ·
alters L to an equivalent link without touching the axis.

Now we can regard this link as in R3, where the axis {z2 = 0} corresponds to the z-axis, and
{z1 = 0} corresponds to a circle, and {(z1, z2) ∈ S3, z2/|z2| = eiθ0} corresponds to {θ = θ0} in
cylindrical coordinates. For this orbit link, we expect that none of its smooth pieces has its tangent
K̇i(s) coplanar with the axis, except countable many end points. We apply a similar approach to
achieve this goal:

Suppose with respect to the z-axis, the position of the curve at s0〈
˙̃
Ki(s0), eθ(K̃i(s0))

〉
is zero, where 〈·, ·〉 is the Euclidean inner product, and eθ(x, y, z) = (y,−x, 0) is a vector. Choose x
smaller than but very close to

sup{s ∈ R; s < s0,
〈

˙̃
Ki(s), eθ(K̃i(s))

〉
6= 0},

and choose y larger than but very close to

inf{s ∈ R; s > s0,
〈

˙̃
Ki(s), eθ(K̃i(s))

〉
6= 0},

such that a = K̃i(x), c = K̃i(y) have their tangent not coplanar with the axis. Then choose a point b
sufficiently close to [a, c], such that E b

ac is applicable to L, and (∂[a, b, c]− [a, c]) have their tangent not
coplanar with the axis, except b. Then we also have tangents of E(G)(∂[a, b, c]− [a, c]−b) not coplanar
with the axis, since for each θ, E(G) maps {(z1, z2) ∈ S3, z2/|z2| = eiθ} to itself, which corresponds to
a plane through z-axis in R3.

Then, since the orbit link is compact, exactly the same approach of Equation 4.vii can be applied
to acquire an equivalent orbit link which is composed of countable many smooth pieces, each with a
constant position.

After then, we apply Lemma 2.1.2 of [BC74] with some simplification and necessary modifications,
to deform the link such that any smooth piece of it has a positive position. For each point of a negative
curve [a, c], draw a smooth curve inside the plane through this point and the z-axis, joining this point
to the z-axis, and avoiding any other part of the link. This is possible, since the orbit link is compact,
and its intersection with the plane through the z-axis is finite many points.

Suppose a is joined to b ∈ {x = 0, y = 0} by [a, b]. Thicken this 1-simplex and get a 2-simplex
[a, b, a1] where a1 ∈ [a, c], such that [a, b, a1] ∩ L = [a, a1] and [a1, b] ⊂ {θ = θ(a1)}. We propose an
isotopy such that E b

aai is applicable to L. �
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