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1. Introduction

My research interests are low dimensional topology. In particular, my works find new differences

between the smooth world and the continuous world.

One famous example in this area is Milnor’s exotic 7-sphere: there are manifolds homeomorphic

but not diffeomorphic to S7. These are called exotic smooth structures on S7. As another example,

there are diffeomorphisms continuously isotopic but not smoothly isotopic to the identity. These are

called exotic diffeomorphisms. In general, for a smooth manifold X, we can consider the homotopy

type of DiffpXq, the space of all diffeomorphisms on X, along with a natural map to HomeopXq, the

space of all homeomorphisms on X. Exotic diffeomorphisms correspond to the kernel of the morphism

π0pDiffpXqq Ñ π0pHomeopXqq. More generally, we can consider the behavior of the higher homotopy

groups.

Such problems are mysterious when X is 4-dimensional, since there is not enough room to apply

standard techniques that convert these problems to ones in algebraic topology. The tool I use is gauge

theory, which comes from physics. In particular, my works develop new invariants from Seiberg-Witten

theory ([SW94]), and they detect exotic phenomena on nonsimply connected 4-manifolds, irreducible

4-manifolds, and 4-manifolds with small b`2 (the positive index of the intersection form). These projects

not only generalize old results by novel analytical and algebraic techniques, but also capture topological

ideas behind those techniques.

2. Thesis Projects

Let γ be a loop in a closed smooth 4-manifold X with a trivialization of the normal bundle. A

surgery along γ is removing a neighborhood of γ, and gluing back a copy of D2 ˆ S2. For example,

a surgery along S1 ˆ tptu Ă S1 ˆ S3 would produce S4, while a surgery along a trivial loop on S4

may produce S2ˆS2 or CP 2#CP 2. So such surgery establishes relations between lots of 4-manifolds.

The four projects in my thesis (draft available at https://hcqiu.github.io/surgery.pdf, the first part

available at https://arxiv.org/abs/2409.02265) describe how a surgery can preserve or produce exotic

phenomena.

The tool we use comes from the Seiberg-Witten equations, which depends on a metric and a self-

dual 2-form. The input of the equation for X includes a Spinc-structure (they are related to elements

in H2pX;Zq), a Up1q-connection, and a “spinor”. The set of equivalence classes of Up1q-connections

and spinors under the “gauge group” MappX,S1q is called the configuration space (denoted by B),

which is a fiber bundle with fiber CP8 and base a torus T b1pXq. A tuple consisting of a metric and

a perturbing 2-form is called a parameter. The solution of this equation with a suitable parameter

is a smooth compact manifold in the configuration space. This manifold is called the SW moduli

space (denoted by M). Its dimension is computed by the Atiyah-Singer index theorem, and if it is
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even, we can integrate a poduct of c1pCP
8q on the moduli space and get the so-called SW invariant

(when the dimension is 0, the integral just counts the points with signs). This is an invariant under

diffeomorphism. Many examples of exotic 4-manifolds were found by computing this invariant for two

homeomorphic manifolds.

The family SW invariant (FSW ), on the other hand, can detect higher dimensional exotic phenom-

ena. Given a smooth family of X over a base B and a corresponding family of parameters, the union

of the solutions is called the parameterized moduli space, and if its dimension is 0 then FSW is the

signed counts of points with orientation. For each k ě 0, Ruberman-Auckly construct a pk` 1q-family

of X such that the FSW for this family is an invariant of πkpDiffpXqq.

In the following projects, we generalize SW and FSW to 1-dimensional moduli space, such that

new invariants (we call them SWΘ and FSWΘ) can detect exotic phenomena. Then we prove several

surgery formulas that show how a surgery changes SW , FSW , SWΘ and FSWΘ.

2.1. Surgery formula for homologically nontrivial loop [Qiu24]. For a 4-manifold X with

H1pX;Zq “ Z,

suppose s is a Spinc-structure such that dimMpX, sq “ 1. The configuration space is homotopy

equivalent to a bundle over S1 with fiber CP8. Let Θ be the pullback of a generator of H1pS1;Zq.
Define the cut-down Seiberg-Witten invariant SWΘpX, sq be the integral of Θ on MpX, sq. We prove

that this invariant detects exotic smooth structures.

Let γ Ă X be a loop that represents a generator of H1pX;Zq{torsion “ Z. Suppose a surgery

along γ produces X 1. We show that any Spinc-structure s on X can be extended to a unique Spinc-

structure s1 on X 1. Since the surgery kills the first cohomology group, H1pX 1;Zq “ 0 and therefore

dimMpX 1, s1q “ 0. Hence SW pX 1, s1q is defined by counting points in MpX 1, sq. The main theorem of

this project is

Theorem 2.1. SWΘpX, sq “ SW pX 1, s1q.

This is proved by applying the classical gluing result in Nicolaescu’s book [Nic00] twice. Let S1ˆD3

be a neighborhood of γ, and let X0 “ X ´ S1 ˆD3. Then gluing X0 with S1 ˆD3 produces X, while

gluing X0 with D2 ˆ S2 produces X 1. The classical gluing result says, if a certain “obstruction space”

is trivial on X0, then MpXq is the fiber product MpX0q ˆMpS1ˆS2q MpS
1 ˆD3q while MpX 1q is the

fiber product MpX0q ˆMpS1ˆS2q MpD
2 ˆ S2q. We prove that since γ is homologically nontrivial, for

generic parameters such obstruction space is trivial. Furthermore, we can choose suitable metrics such

that MpS1ˆD3q ÑMpS1ˆS2q is the identity map of a circle, and MpD2ˆS2q ÑMpS1ˆS2q is the

inclusion of one point into a circle. Hence if we cut MpX 1q, we get MpXq, and the theorem follows.

As lots of exotic smooth structures are detected by SW , we can now generalize those results to

nonsimply connected manifolds, for example:

Corollary 2.2. Epnq#S1 ˆ S3 admits infinitely many exotic smooth structures.

The method developed in this project also works for the homologically trivial case. Let γ Ă X be

a loop that represents 0 P H1pX;Zq. Suppose a surgery along γ produces X 1. We show that for any

extension s1 of any Spinc-structure s on X with dimMpX, sq “ 0, we have dimMpX 1, s1q “ 0. Since γ

is homologically trivial, we will have

Theorem 2.3. SW pX 1, s1q “ 0.
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This generalizes the vanishing result of the connected sum with S2 ˆ S2. Theorem 2.3 can also be

obtained by the generalized adjunction formula ([KM94]), but the method in this project fits in the

proof of family surgery formula below, where a homologically trivial loop has nontrivial higher exotic

phenomena.

2.2. Family surgery formula for homologically nontrivial loop. In this project we consider a

smooth family EX of X indexed by the parameter space B. Let ES1 be a subbundle such that each

fiber of ES1 is a loop that represents a generator of H1pX;Zq “ Z. Suppose a family of surgeries along

ES1 produces EX1 . Suppose s is a Spinc-structure such that dimMpX, sq “ dimB ` 1. As before

any Spinc-structure s on X can be extended to a unique Spinc-structure s1 on X 1, and we are able to

define Θ similarly. Since the surgery kills the first cohomology group, H1pX 1;Zq “ 0 and therefore the

parameterized moduli space on X 1 has dimension dimFMpX 1, s1q “ 0. Hence FSW pX 1, s1q is defined

by counting points in FMpX 1, sq. The main theorem of this project is

Theorem 2.4. FSWΘpEX , sq “ FSW pEX1 , s
1q.

The main issue here is that the parameterized moduli space on X is 1-dimensional. Then locally

there would be two cases:

1) For an isolated parameter the solution is 1-dimensional, and there is no other nearby parameter

such that the equation has solutions;

2) There exists a 1-dimensional family of parameters such that the solutions are 0-dimensional for

each of them.

By analysing Hodge star operator and an exact sequence, it turns out that these cases depend purely on

topological properties of X0. When γ is homologically nontrivial, we prove that for a generic parameter,

the parameterized moduli space on X0 is of case 1, and the dimension of the obstruction space on X0

is equal to dimB, and therefore we can apply a method developed by Baraglia-Konno[BK20].

This cut-down family invariant generalizes exotic diffeomorphisms found by Ruberman[Rub98] and

Baraglia-Konno[BK20]. For example:

Corollary 2.5. Let X be one of the following manifolds:

• CP2#p#2CP2
q#Y for b`2 pY q ą 2.

• #npS2 ˆ S2q#p#nK3q for n ě 2.

• #2nCP2#p#mCP2
q for n ě 2 and m ě 10n` 1.

Then X#pS1 ˆ S3q admits an exotic diffeomorphism.

Ruberman[Rub02] gives examples of simply connected manifolds for which the space of positive

scalar curvature (psc) metrics is disconnected. This is demonstrated using family Seiberg-Witten

invariant. We can generalize these results by the family surgery formula:

Corollary 2.6. Let X be one of the following manifolds:

• CP2#p#2CP2
q#Y for b`2 pY q ě 3 .

• #2nCP2#p#mCP2
q for n ě 2 and m ě 10n` 1.

Then the space of psc metrics on X#pS1 ˆ S3q has infinite many path components.

Konno proves that π0pDiffpXqq is not finitely generated for some simply connected 4-manifold. We

can generalize his result to nonsimply connected 4-manifolds:
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Corollary 2.7. There exists a simply connected 4-manifold X that is not a sphere, such that

π0pDiffpX#pS1 ˆ S3qqq

is not finitely generated.

2.3. Family surgery formula for homologically trivial loops. In this project, we suppose each

fiber of ES1 is a homologically trivial loop. Then we have

Theorem 2.8. Use the notation as before and assume the following:

‚ dimB ą 0;

‚ ES1 is an orientable S1-subbundle of EX .

Then

FSW pEX1 , s
1q “ 0.

As we remark above, a surgery along a homologically trivial loop can preoduce nontrivial exotic

phenomena:

Theorem 2.9. Use the notation as before and assume the following:

‚ B is a circle;

‚ ES1 is an S1-subbundle of EX , and it is a Klein bottle;

Then

FSWZ{2pEX1 , s
1q ” SW pX, sq mod 2.

(Here the family invariant is defined by counting the points mod 2.)

When γ is homologically trivial, we prove that for a generic parameter, the parameterized moduli

space on X0 is of case 2: there exists a 1-dimesional family of parameters such that the solutions are

0-dimensional for each of them. The dimension of the obstruction space on X0 is one higher than

dimB, and therefore we have to generalize the method developed by Baraglia-Konno and estimate the

errors by some inequalities.

A special example of these theorems is that each fiber of ES1 is a homotopically trivial loop. In this

case X 1 is X#pS2ˆS2q or X#CP 2#CP 2, and the results for X#pS2ˆS2q were previously obtained

by Baraglia-Konno[BK20]. But Theorem 2.9 works also for a homotopically nontrivial loop, so it has

the potential to produce exotic diffeomorphisms on a irreducible manifold.

3. Exotic diffeomorphisms on manifolds with b`2 “ 2

The first examples of exotic diffeomorphisms on simply-connected smooth closed 4-manifolds were

found by Ruberman[Rub98] using parameterized Donaldson invariant, and his examples have b`2 ě 4.

While the exotic diffeomorphisms turned out to be very rich, we know much less about the b`2 “ 2

case, because parameterized gauge-theoretic invariants are not well defined. In this project (draft

available at https://hcqiu.github.io/critical.pdf) we present a method to find exotic diffeomorphisms

on simply-connected smooth closed 4-manifolds with b`2 “ 2, and as a result we obtain

Theorem 3.1. 2CP 2#10CP 2 admits exotic diffeomorphisms.
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To motivate the method, we first discuss the complications due to small b`2 in the ordinary case.

The ordinary SW invariant depends on the choice of the metric and the perturbing 2-form. All of

such parameters can be separated to some “chambers”. The SW invariant is constant for parameters

in the same chamber, and is the same for a parameter and its pushforward by a diffeomorphism. The

space of parameters is equivalent to Sb
`
2 ´1, hence when b`2 ą 1, there is only one chamber and the

ordinary SW invariant is a well-defined smooth invariant. When b`2 “ 1, there are two chambers.

Szabó’s result[Sza96] says there are two homeomorphic smooth 4-manifolds with b`2 “ 1, such that the

SW invariant for one of them is some m for one chamber, and the invariant for another one can not

be m for any chamber. This proves that they are not diffeomorphic. Such 4-manifolds are the smallest

ones (in the sense of b`2 ) that admit exotic smooth structures detected by the gauge theory.

To detect exotic diffeomorphisms, we compute the family SW invariants (FSW) for the mapping

tori of two diffeomorphisms, and if they are different, these tori are not diffeomorphic, hence these dif-

feomorphisms are not smoothly isotopic. By this machinery Ruberman and Baraglia-Konno prove that

for X with an exotic smooth structure detected by the SW invariant and b`2 pXq ą 1, X#CP 2#2CP 2

and X#S2 ˆ S2 admit exotic diffeomorphisms. Note that these manifolds have b`2 ą 2.

Our work generalize such results to b`2 “ 2. The main issue in this case is that, the family invariant

FSW on a family of manifolds, depends on the family of parameters. The mapping torus is an S1-

family of manifolds, so the space of parameter families is an S1-family of Sb
`
2 ´1 “ S1. The set of

chambers corresponds to the set of fiberwise homotopy classes of these parameter families, which has

more than one elements. If there exists a bundle isomorphism between two mapping tori, it would

bring a chamber on one mapping torus to a chamber on another one. To disprove this hypothesis, we

need to compare the FSW for these chambers. But the situation is a bit more complicated than in

the ordinary case treated by Szabó:

• FSW may run over all possible values (Z if it is an integer invariant, or Z{2 for the mod 2

invariant) as the chambers change.

• The set of chambers corresponds to Z or Z{2 only noncanonically, which means we can only

measure the difference between two parameter families on the same mapping torus. But we

cannot compare two chambers on different mapping tori.

• The family of metrics will also determine the chamber, but we don’t know how the diffeomor-

phism in the hypothesis acts on the families of metrics.

To solve all these problems, we construct a homotopy invariant of the parameter families, which is

called the winding number. We prove that this is an invariant under the diffeomorphism of mapping

tori. This viewpoint symplifies the chamber structure and decouples the families of metrics and the

family of perturbing 2-forms. By additional assumption on b´2 we can throw out the influences of the

metric family and the Spinc-structure, such that we can apply the traditional wall-crossing and gluing

arguments.

4. Dehn twist on a sum of two homology 4-tori

Up to now each exotic diffeomorphism we saw come from an exotic smooth structure of a 4-manifold.

In this project we construct an exotic diffeomorphism on a nonsimply connected manifold without the

need for an exotic smooth structure.
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A homology 4-torus is a smooth 4-manifold that has the same homology groups as a 4-dimensional

torus T 4. The connected sum of two manifolds X1 and X2 can be written as

X1#X2 “ pX1 ´D
4q YS3 pr0, 1s ˆ S3q YS3 pX2 ´D

4q,

where r0, 1sˆS3 is called the neck of the connected sum. The Dehn twist along a 3-sphere in the neck

is a diffeomorphism d : X1#X2 Ñ X1#X2 such that d is the identity outside the neck, and on the

neck it has the form

r0, 1s ˆ S3 Ñ r0, 1s ˆ S3

pt, sq ÞÑ pt, αtpsqq

where α P π1pSOp4q, Idq “ Z{2 is the nontrivial element. It looks like you rotate your head by 2π:

your head and body are in the original position, and the only part that changes is your neck.

For a homology torus X, its cohomology groups are isomorphic to the ones of T 4, but the ring

structure might be different. Let α1, ¨ ¨ ¨ , α4 be a basis of H1pX;Zq, and define the determinant of X

by

r :“ |xα1 ! α2 ! α3 ! α4, rXsy|

where rXs is the fundamental class. The main theorem of this project is

Theorem 4.1. If X1, X2 are two homology tori such that the determinants r1, r2 of them are odd.

Then the Dehn twist along a 3-sphere in the neck of X1#X2 is not smoothly isotopic to the identity.

The main tool we use is the Bauer-Furuta invariant [BF04]. Its idea is to regard the Seiberg-Witten

equation as an Pinp2q-equivariant map, and consider the property of the map. By a finite dimensional

approximation, it is an equivariant stable mapping class for a spin manifold X:

BFPinp2q
pX, sq P tTF0, S

nH`b`2 pXqR̃uPinp2q.

where s is a Spinc-structure of X, and TF0 is the Thom space of a rank m quarternion bundle over

T b1pXq, such that

m´ n “
σpXq

4

where σpXq is the signature of X.

One can also forget the Pinp2q-action and define the nonequivariant Bauer-Furuta invariant by

BFteupX, sq :“ Res
Pinp2q
teu BFPinp2q

pX, sq P tTF0, S
4n`b`2 pXqu.

Now one has a sequence of invariants that can detect exotic phenomena: the Seiberg-Witten invariant,

the nonequivariant Bauer-Furuta invariant, and the Pinp2q-equivariant Bauer-Furuta invariant. They

contain more and more infomation, but the computations get more and more complicated.

The main theorem comes from a sequence of results:

First, by a perturbation of the SW equation proposed by Ruberman-Strle[RS00], and a computation

of the bundle TF0 via the index theorem and the Steenrod square, we get

Theorem 4.2. If X is a homology torus with odd determinant, and s is the trivial structure, then

BF teupX, sq “ p0, 0, 0, 0, 1q P 4Z‘ Z{2.

Actually BF teupX, sq is the Hopf element η.
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Second, we compute the nonequivariant family Bauer-Furuta invariant for the mapping torus of the

Dehn twist d : X1#X2 Ñ X1#X2. It is denoted by

BF teuppX1 ˆ S
1, s̃1q#pX2 ˆ S

1, s̃τ2qq P tS
R ^ TF, S2H`6Ru.

We compute the bundle F by the index theorem, and prove that there exists a Hopf element ν in

the stable CW structure of TF . Therefore, by Atiyah-Hirzebruch spectral sequence, BF teuppX1 ˆ

S1, s̃1q#pX2ˆS
1, s̃τ2qq must be trivial. This vanishing result is similar to the fact that, a 3-sphere can

not be mapped to CP 2 nontrivially, because the 4-cell in CP 2 is attached to the 2-cell by the Hopf

element η.

Finally, we compute the equivariant family Bauer-Furuta invariant BF tS
1
uppX1 ˆ S1, s̃1q#pX2 ˆ

S1, s̃τ2qq. By a cofiber sequence we can throw away the fixed points in the equivariant map, and then

apply the equivariant Hopf theorem to convert BF tS
1
uppX1ˆS

1, s̃1q#pX2ˆS
1, s̃τ2qq to a nonequivariant

stable mapping class. Now the dimension is changed and the Hopf invariant mentioned above has no

effect. Hence we can apply the method of Kronheimer-Mrowka[KM20], and show that

Theorem 4.3. BF tS
1
uppX1 ˆ S

1, s̃1q#pX2 ˆ S
1, s̃τ2qq is nontrivial.

5. Current Projects and Future Work

In the next few years, I plan to think about some topics that are related to methods or problems

above:

• Joint with Jianfeng Lin, we are trying to figure out if the Dehn twist on a sum of two odd

homology 4-tori is still exotic after a stabilization (connected sum with S2 ˆ S2).

• Theorem 2.9 suggests that it’s possible to produce an irreducible manifold with exotic dif-

feomorphism by a surgery along a homotopically nontrivial loop. A candidate is to find an

analogue of log transform of elliptic surfaces, and an analogue of resolving elliptic surfaces by

a stabilization.

• A forthcoming work of Ruberman-Auckly suggests that πkpDiffpXqq is related to

πk`1pDiffpX#pS2 ˆ S2qqq.

It’s possible to consider an analogue of the stable homotopy category, by replacing the suspen-

sion with the stablilization.

• Budney-Gabai prove Corollary 2.7 for X “ S4 by considering the homotopy of a configuration

space. I want to consider how to generalize their invariants to higher dimension.

• The skein-lasagna module is a generalization of Khovanov homology, and it’s able to detect

some exotic phenomena. We want to generalize some ideas we have in Seiberg-Witten theory

to this invariant.
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